High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction.

Cardiovascular diabetology. 2019;18(1):104
Full text from:

Plain language summary

Metabolic syndrome (MetS) is associated with an eightfold increase in the risk of myocardial infarction (MI), and MI patients who have MetS have an increased risk of other cardiovascular events and recurrent MI. Exercise can improve MetS and is also recommended for patients after MI for rehabilitation. The aim of this retrospective study was to examine the effect of supervised high intensity interval training (HIIT) on MetS and body composition in overweight patients with MI. Of 56 patients who took part in a multidisciplinary rehabilitation program, 42 had engaged in HIIT and 14 in moderate-intensity continuous training (MICT), both groups had 36 supervised sessions over 12 weeks. Compared to MICT, the HIIT group demonstrated greater reductions in MetS. Better improvements in the HIIT group were seen in waist circumference, fasting blood glucose, triglycerides, diastolic blood pressure, body fat and lean mass, compared to the MICT group. There were no significant differences between groups in changes in BMI, HDL cholesterol and systolic blood pressure. The authors concluded that their findings support the use of HIIT to improve MetS in MI patients

Abstract

BACKGROUND To examine the effect of high-intensity interval training (HIIT) on metabolic syndrome (MetS) and body composition in cardiac rehabilitation (CR) patients with myocardial infarction (MI). METHODS We retrospectively screened 174 consecutive patients with MetS enrolled in CR following MI between 2015 and 2018. We included 56 patients who completed 36 CR sessions and pre-post dual-energy X-ray absorptiometry. Of these patients, 42 engaged in HIIT and 14 in moderate-intensity continuous training (MICT). HIIT included 4-8 intervals of high-intensity (30-60 s at RPE 15-17 [Borg 6-20]) and low-intensity (1-5 min at RPE < 14), and MICT included 20-45 min of exercise at RPE 12-14. MetS and body composition variables were compared between MICT and HIIT groups. RESULTS Compared to MICT, HIIT demonstrated greater reductions in MetS (relative risk = 0.5, 95% CI 0.33-0.75, P < .001), MetS z-score (- 3.6 ± 2.9 vs. - 0.8 ± 3.8, P < .001) and improved MetS components: waist circumference (- 3 ± 5 vs. 1 ± 5 cm, P = .01), fasting blood glucose (- 25.8 ± 34.8 vs. - 3.9 ± 25.8 mg/dl, P < .001), triglycerides (- 67.8 ± 86.7 vs. - 10.4 ± 105.3 mg/dl, P < .001), and diastolic blood pressure (- 7 ± 11 vs. 0 ± 13 mmHg, P = .001). HIIT group demonstrated greater reductions in body fat mass (- 2.1 ± 2.1 vs. 0 ± 2.2 kg, P = .002), with increased body lean mass (0.9 ± 1.9 vs. - 0.9 ± 3.2 kg, P = .01) than the MICT. After matching for exercise energy expenditure, HIIT-induced improvements persisted for MetS z-score (P < .001), MetS components (P < .05), body fat mass (P = .002), body fat (P = .01), and lean mass (P = .03). CONCLUSIONS Our data suggest that, compared to MICT, supervised HIIT results in greater improvements in MetS and body composition in MI patients with MetS undergoing CR.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal
Patient Centred Factors : Mediators/Metabolic syndrome/exercise
Environmental Inputs : Physical exercise
Personal Lifestyle Factors : Exercise and movement
Functional Laboratory Testing : Blood

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata